Finding algorithm now kinda works
This commit is contained in:
parent
4a111f9b58
commit
1992ae133c
3 changed files with 45 additions and 27 deletions
|
|
@ -31,25 +31,40 @@ impl Learner {
|
||||||
}
|
}
|
||||||
pub fn calculate_formula(&mut self) -> Formula {
|
pub fn calculate_formula(&mut self) -> Formula {
|
||||||
for _ in 0..self.iterations {
|
for _ in 0..self.iterations {
|
||||||
self.best_algorithm = self.iterate()
|
let current_best = Learner::get_similarity(
|
||||||
|
&self.expected_outputs,
|
||||||
|
&self.best_algorithm.run(self.inputs.clone()),
|
||||||
|
);
|
||||||
|
let found_best = self.iterate();
|
||||||
|
if found_best.1 > current_best.unwrap_or(0.) {
|
||||||
|
self.best_algorithm = found_best.0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
self.best_algorithm.clone()
|
self.best_algorithm.clone()
|
||||||
}
|
}
|
||||||
pub fn calculate_formula_debug(&mut self) -> Formula {
|
pub fn calculate_formula_debug(&mut self, tree: bool, sim: bool) -> Formula {
|
||||||
for _ in 0..self.iterations {
|
for _ in 0..self.iterations {
|
||||||
self.best_algorithm = self.iterate();
|
let current_best = Learner::get_similarity(
|
||||||
self.best_algorithm.display_tree();
|
&self.expected_outputs,
|
||||||
|
&self.best_algorithm.run(self.inputs.clone()),
|
||||||
|
);
|
||||||
|
let found_best = self.iterate();
|
||||||
|
|
||||||
|
if sim {
|
||||||
|
println!("{:?}", &found_best.1);
|
||||||
|
}
|
||||||
|
if tree {
|
||||||
|
self.best_algorithm.display_tree();
|
||||||
|
}
|
||||||
|
|
||||||
|
if found_best.1 > current_best.unwrap_or(0.) {
|
||||||
|
self.best_algorithm = found_best.0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
self.best_algorithm.clone()
|
self.best_algorithm.clone()
|
||||||
}
|
}
|
||||||
fn iterate(&self) -> Formula {
|
fn iterate(&self) -> (Formula, f64) {
|
||||||
let best_similarity = Learner::get_similarity(
|
let mut formulas: Vec<(Formula, f64)> = vec![];
|
||||||
&self.expected_outputs,
|
|
||||||
&self.best_algorithm.run(self.inputs.clone()),
|
|
||||||
)
|
|
||||||
.unwrap();
|
|
||||||
let mut formulas: Vec<(Formula, f64)> =
|
|
||||||
vec![(self.best_algorithm.clone(), best_similarity)];
|
|
||||||
for _ in 0..self.formulas_per_iteration {
|
for _ in 0..self.formulas_per_iteration {
|
||||||
let mut formula = self.best_algorithm.clone();
|
let mut formula = self.best_algorithm.clone();
|
||||||
Learner::mutate_formula_randomly(&mut formula);
|
Learner::mutate_formula_randomly(&mut formula);
|
||||||
|
|
@ -71,20 +86,23 @@ impl Learner {
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.0
|
|
||||||
.clone()
|
.clone()
|
||||||
}
|
}
|
||||||
fn mutate_formula_randomly(formula: &mut Formula) {
|
fn mutate_formula_randomly(formula: &mut Formula) {
|
||||||
let mut editor = formula.modify_random_node();
|
let amount_of_mutations = random_range(1..4);
|
||||||
let decided_action = random_range(0..4);
|
for _ in 0..amount_of_mutations {
|
||||||
if decided_action == ACTION_ADD {
|
let mut editor = formula.modify_random_node();
|
||||||
editor.add_node(editor.get_random_node());
|
let decided_action = random_range(0..4);
|
||||||
} else if decided_action == ACTION_REMOVE {
|
|
||||||
editor.remove_node(None);
|
if decided_action == ACTION_ADD {
|
||||||
} else if decided_action == ACTION_INSERT {
|
editor.add_node(editor.get_random_node());
|
||||||
editor.insert_node(editor.get_random_node(), None);
|
} else if decided_action == ACTION_REMOVE {
|
||||||
} else if decided_action == ACTION_MUTATE {
|
editor.remove_node(None);
|
||||||
editor.mutate_node();
|
} else if decided_action == ACTION_INSERT {
|
||||||
|
editor.insert_node(editor.get_random_node(), None);
|
||||||
|
} else if decided_action == ACTION_MUTATE {
|
||||||
|
editor.mutate_node();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
pub fn get_similarity(expected_output: &Vec<f64>, real_output: &Vec<f64>) -> Result<f64, ()> {
|
pub fn get_similarity(expected_output: &Vec<f64>, real_output: &Vec<f64>) -> Result<f64, ()> {
|
||||||
|
|
|
||||||
|
|
@ -9,11 +9,11 @@ mod tests;
|
||||||
fn main() {
|
fn main() {
|
||||||
let mut learner = Learner::new(
|
let mut learner = Learner::new(
|
||||||
vec![0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.],
|
vec![0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.],
|
||||||
vec![0., 2., 4., 6., 8., 10., 12., 14., 16., 19., 20.],
|
vec![0., 1., 4., 9., 16., 25., 36., 49., 64., 81., 100.],
|
||||||
|
None,
|
||||||
None,
|
None,
|
||||||
Some(10000),
|
|
||||||
);
|
);
|
||||||
let formula = learner.calculate_formula_debug();
|
let formula = learner.calculate_formula();
|
||||||
println!("{:?}", formula.as_text());
|
println!("{:?}", formula.as_text());
|
||||||
formula.display_tree();
|
formula.display_tree();
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -88,7 +88,7 @@ impl Node {
|
||||||
} => {
|
} => {
|
||||||
self.max_children_count = max_args.clone();
|
self.max_children_count = max_args.clone();
|
||||||
if let Some(x) = max_args {
|
if let Some(x) = max_args {
|
||||||
self.children.truncate(x.clone());
|
self.children.resize(x.clone(), Node::number(0.));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
NodeHandler::Variable => {
|
NodeHandler::Variable => {
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue